File formats
Format of a file with a list of models and properties:
- Description:
The first line is a header. It contains the root folder (including the final slash) with the grid of models and optionally, a suffix for the names of the files with the theoretical pulsation frequencies. For example:
/home/dreese/models_inversions/Grid_mesa_MS/ .freqEach of the following lines correspond to one model in the grid. They are composed of 9 or more columns with the following information:
The second part of the path for the given model. When concatenated with the prefix on the first line, this should give the full path to the model. If, furthermore, the suffix from the first line is appended to it, it gives the name of the file with the frequencies.
The stellar mass in \(\mathrm{g}\)
The stellar radius in \(\mathrm{cm}\)
The stellar luminosity in \(\mathrm{g.cm^2.s^{-3}}\)
The metallicity
The hydrogen content
The stellar age in \(\mathrm{Myrs}\)
The effective temperature in \(\mathrm{K}\)
A dimensionless age parameter
(user-defined) This and the following columns correspond to the parameters specified in the
user_params
variable given inAIMS_configure.py
.Except for the first line, the order of the lines does not matter. AIMS will construct evolutionary tracks based on the parameters selected in the
grid_params
variable given inAIMS_configure.py
, and sort them according to age.- Example:
Here’s an example of a file read by AIMS (via the
model.Model_grid.read_model_list()
method):/home/dreese/models_inversions/Grid_mesa_MS/ .freq M0.80/LOGS_M0.80/M0.80Z0.0028Y0.2536/m0.80Y0.2536Z0.0028a1.8ovh0.2ovhe0_n1.profile.FGONG 1.59136E+33 5.02248266E+10 2.33097993E+33 0.0028 0.7436 1.00000000E-04 6000.94326 0.00000 7.432106E-01 M0.80/LOGS_M0.80/M0.80Z0.0028Y0.2536/m0.80Y0.2536Z0.0028a1.8ovh0.2ovhe0_n2.profile.FGONG 1.59136E+33 4.86716596E+10 1.94640636E+33 0.0028 0.7436 2.09332874E+02 5827.26021 0.01383 7.319698E-01 M0.80/LOGS_M0.80/M0.80Z0.0028Y0.2536/m0.80Y0.2536Z0.0028a1.8ovh0.2ovhe0_n3.profile.FGONG 1.59136E+33 4.89176532E+10 1.97545563E+33 0.0028 0.7436 4.34073185E+02 5834.15715 0.02868 7.188704E-01It contains three models. The structure of the first model can be found in the following file:
/home/dreese/models_inversions/Grid_mesa_MS/M0.80/LOGS_M0.80/M0.80Z0.0028Y0.2536/m0.80Y0.2536Z0.0028a1.8ovh0.2ovhe0_n1.profile.FGONGand its frequencies in this file:
/home/dreese/models_inversions/Grid_mesa_MS/M0.80/LOGS_M0.80/M0.80Z0.0028Y0.2536/m0.80Y0.2536Z0.0028a1.8ovh0.2ovhe0_n1.profile.FGONG.freqThe tenth column corresponds to the central hydrogen content, as specified by the contents of the
user_params
variable fromAIMS_configure.py
:user_params = (("Xc", r'Central hydrogen, $%sX_c%s$'),)
Format of a file with theoretical frequencies:
AIMS is able to read files with the theoretical frequencies in various different text formats (see example below) as well as in the grand summary format from ADIPLS. This is a FORTRAN binary format described on pages 32 and 33 of the ADIPLS documentation. What follows is a description of one the text formats used by AIMS for files with frequencies:
- Description:
the first line is a header (and is skipped)
the following lines contain five columns which correspond to l, n, frequency, a_value, inertia
the a_value column is ignored, so it could contain anything.
InversionKit
will typically put the difference between the numerical and variational frequencies in that column.- Example:
Here’s an example of a file with theoretical pulsation frequencies which can be read by AIMS (via the
model.Model.read_file()
method):#l n nu_theo (muHz) nu_var-nu_theo (muHz) Inertia 0 15 3.225852209451052e+03 1.312960435370769e-03 3.233628965187502e-09 0 16 3.421699035498995e+03 -2.482639610207116e-03 2.229252226305757e-09 0 17 3.615805033992529e+03 3.993051574070705e-03 1.618154348529283e-09 0 18 3.809740380503104e+03 9.650666734160040e-04 1.250359548964621e-09 0 19 4.003716857281849e+03 -7.991676880010345e-03 1.033914933206195e-09 0 20 4.198691419457581e+03 1.742711681799847e-03 8.866985261874711e-10 1 15 3.316007619955153e+03 5.056100344972947e-03 2.715966891128009e-09 1 16 3.511258977705781e+03 1.855844971032639e-04 1.902147334986236e-09 1 17 3.705576731149742e+03 -2.505276897409203e-03 1.424266453221534e-09 1 18 3.899485457373566e+03 5.212276555539575e-03 1.134594720287415e-09 1 19 4.094401244305849e+03 6.020260397235688e-03 9.579611596023003e-10 1 20 4.289716814475406e+03 -1.019475706561934e-02 8.344804874142957e-10 2 15 3.399280335063532e+03 -8.466318249702454e-04 2.315947651745295e-09 2 16 3.594141943503532e+03 4.712417365681176e-03 1.665322627996223e-09 2 17 3.788792185755381e+03 -1.167229517704982e-03 1.277569745555387e-09 2 18 3.983271067684743e+03 -6.187409578615188e-03 1.048757367028520e-09 2 19 4.178866833517976e+03 6.893199766636826e-03 8.963691946280509e-10 2 20 4.374959711016754e+03 3.274638356742798e-03 7.911508926344487e-10 3 15 3.476224140192640e+03 -2.524210208321165e-03 2.009476926536794e-09 3 16 3.671438520072859e+03 2.351724720028869e-04 1.485336526791650e-09 3 17 3.866350877376991e+03 5.643782460992952e-03 1.167619144668003e-09 3 18 4.061929209725198e+03 -1.552865011490212e-03 9.789648655155361e-10 3 19 4.258077196700047e+03 -8.629839649984206e-03 8.472972126693386e-10 3 20 4.455063887754256e+03 1.484804296796938e-02 7.528069568152023e-10
Format of a file with observational constraints:
- Description:
a collection of lines with frequency data with either (l, freq, error_bar) or (l, n, freq, error_bar) (depending on the value of
read_n
in theAIMS_configure.py
file). For example:0 1503.5 0.16or the following if specifying the radial order:
0 15 1503.5 0.16a collection of lines with classical constraints. These start with the name of the relevant parameter (see possible options in
model.Model.string_to_param()
) followed by a description of its probability distribution function. This probability distribution function is specified in two possible ways:
it is implicitly assumed to be Gaussian. In this situation it is only necessary to specify the mean value and the one sigma error bar. For example:
Teff 6100 80it is explicitly specified (different options are given in
AIMS.Distribution
):Teff Uniform 6000 6200anything following a
#
is a commentthe order of the lines does not matter
- Examples:
example of a file where n is not specified:
0 1582.20 0.13 # this is a (useless) comment 0 1684.02 0.16 0 1785.57 0.15 1 1526.55 0.29 1 1628.90 0.30 1 1730.45 0.17 2 1575.49 0.82 2 1676.25 0.51 2 1777.62 0.27 Teff 6060.00 84.00 Fe_H -0.20 0.09example of a file where n is specified:
0 15 1582.20 0.13 0 16 1684.02 0.16 Teff 6060.00 84.00 # AIMS doesn't worry about the order of the lines 0 17 1785.57 0.15 1 14 1526.55 0.29 1 15 1628.90 0.30 1 16 1730.45 0.17 2 14 1575.49 0.82 2 15 1676.25 0.51 2 16 1777.62 0.27 Fe_H -0.20 0.09- Differences with AMP:
the number of frequencies does not need to be specified (if this line contains supplementary parameters, than
AIMS.py
may confuse it with frequency data)there are no flags (one should adjust the parameters in
AIMS_configure.py
instead)the order of the lines is not important (one can mix the classic and seismic observables)
it is possible to specify radial orders (depending on the value of
read_n
in theAIMS_configure.py
file)the treatment of non-seismic constraints is more flexible
a larger variety of non-seismic constraints can be included (see possible options in
model.Model.string_to_param()
)full parameter names are allowed (and preferred); for compatibility with AMP, the same one letter abbreviations are also allowed
it is possible to specify the probability distribution function